金榜之路
学大陪你
个性化辅导
关于我们  |  联系我们

高二数学数系的扩充与复数的引入

来源:学大教育     时间:2014-12-18 13:14:16


数学在人类历史发展和社会生活中发挥着不可替代的作用,数学学习很重要,下面给大家带来高二数学数系的扩充与复数的引入相关练习检测题,大家可以做一做,对大家学习数学有帮助。

一、选择题(本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)

1.复数z是实数的充分而不必要条件为(  )

A.|z|=z    B.z=z

C.z2是实数 D.z+z是实数

[答案] A

[解析] 由|z|=z可知z必为实数,但由z为实数不一定得出|z|=z,如z=-2,此时|z|≠z,故|z|=z是z为实数的充分不必要条件,故选A.

2.(2010•湖北理,1)若i为虚数单位,图中复平面内点Z表示复数z,则表示复数z1+i的点是(  )

A.E     B.F

C.G     D.H

[答案] D

[解析] 由图可知z=3+i,

∴z1+i=3+i1+i=(1-i)(3+i)(1-i)(1+i)=4-2i2=2-i,对应复平面内的点H,故选D.

3.(2010•荷泽高二期中)化简2+4i(1+i)2的结果是(  )

A.2+i B.-2+i

C.2-i D.-2-i

[答案] C

[解析] 2+4i(1+i)2=2+4i2i=2-i.

4.在复平面上,一个正方形的三个顶点对应的复数分别是1+2i、-2+i、0,那么这个正方形的第四个顶点对应的复数为(  )

A.3+i B.3-i

C.1-3i D.-1+3i

[答案] D

[解析] 在复平面内通过这四个点易知第四个顶点对应的复数为-1+3i.

5.(2010•新课标全国文,3)已知复数z=3+i(1-3i)2,则|z|=(  )

A.14     B.12

C.1     D.2

[答案] B

[解析] 由题知:z=3+i(1-3i)2=3+i-2-23i=(3+i)(-2+23)(-2-23i)(-2+23i)=-34+14i,可得|z|=(-34)2+(14)2=12,故选B.

6.当z=-1-i2时,z100+z50+1的值是(  )

A.1 B.-1

C.i D.-i

[答案] D

[解析] 原式=-1-i2100+-1-i250+1

=1-i2250+1-i2225+1

=(-i)50+(-i)25+1=-i.故应选D.

7.复数(1+bi)(2+i)是纯虚数,则实数b=(  )

A.2 B.12

C.-12 D.-2

[答案] A

[解析] (1+bi)(2+i)=(2-b)+(2b+1)i是纯虚数,∴2-b=02b+1≠0,∴b=2.

8.复数z=-1+i1+i-1,在复平面内z所对应的点在(  )

A.第一象限 B.第二象限

C.第三象限 D.第四象限

[答案] B

[解析] z=(-1+i)i(1+i)i-1=(-1+i)i-1+i-1=-1+i.

9.已知复数z1=3+4i,z2=t+i,且z1•z2是实数,则实数t等于(  )

A.34 B.43

C.-43 D.-34

[答案] A

[解析] z1•z-2=(3+4i)(t-i)=(3t+4)+(4t-3)i.因为z1•z2是实数,所以4t-3=0,所以t=34.因此选A.

10.已知复数z=1-i,则z2-2zz-1=(  )

A.2i B.-2i

C.2 D.-2

[答案] B

[解析] ∵z=1-i,

∴z2-2zz-1=-2i-2+2i1-i-1=-2-i=-2i,故选B.

11.若z=cosθ+isinθ(i为虚数单位),则使z2=-1的θ值可能是(  )

A.π6 B.π4

C.π3 D.π2

[答案] D

[解析] 解法1:将选项代入验证即可.验证时,从最特殊的角开始.

解法2:z2=(cosθ+isinθ)2=(cos2θ-sin2θ)

+2isinθcosθ=cos2θ+isin2θ=-1,

∴sin2θ=0cos2θ=-1,∴2θ=2kπ+π(k∈Z),

∴θ=kπ+π2(k∈Z),令k=0知选D.

12.设复数z=lg(m2-1)+1-mi,z在复平面内的对应点(  )

A.一定不在一、二象限

B.一定不在二、三象限

C.一定不在三、四象限

D.一定不在二、三、四象限

[答案] C

[解析] ∵m2-1>01-m≥0,∴m<-1,此时lg(m2-1)可正、可负,1-m>2,故选C.

二、填空题(本大题共4个小题,每小题4分,共16分.将正确答案填在题中横线上)

13.已知x+1x=-1,则x2006+1x2006的值为________.

[答案] -1

[解析] ∵x+1x=-1,∴x2+x+1=0.

∴x=-12±32i,∴x3=1.

2006=3×668+2,x2006=x3×668+2=x2,

∴x2006+1x2006=x2+1x2=x+1x2-2=(-1)2-2

=-1.

14.若x、y为共轭复数,且(x+y)2-3xyi=4-6i,则|x|+|y|=________.

[答案] 22

[解析] ∵x、y为共轭复数,∴x+y、xy∈R

由复数相等的条件有:(x+y)2=4-3xy=-6

设x=a+bi(a、b∈R),则y=a-bi,

∴(2a)2=4a2+b2=2,∴|x|+|y|=2a2+b2=22.

15.若(3-10i)y+(-2+i)x=1-9i,则实数x、y的值分别为________.

[答案] x=1,y=1

[解析] 原式可以化为

(3y-2x)+(x-10y)i=1-9i,

根据复数相等的充要条件,有

3y-2x=1,x-10y=-9.解得x=1,y=1.

16.下列命题中,错误命题的序号是____________.

①两个复数不能比较大小;②z1,z2,z3∈C,若(z1-z2)2+(z2-z3)2=0,则z1=z3;③若(x2-1)+(x2+3x+2)i是纯虚数,则实数x=±1;④z是虚数的一个充要条件是z+z∈R;⑤若a,b是两个相等的实数,则(a-b)+(a+b)i是纯虚数;⑥复数z∈R的一个充要条件是z=z;⑦在复数集内,-1的平方根是±i;⑧z21+z22=0⇔z1=z2=0.

[答案] ①②③④⑤⑧

[解析] ①错误,两个复数如果都是实数,则可比较大小;②错误,当z1,z2,z3不全是实数时不成立,如z1=i,z2=1+i,z3=1时满足条件,但z1≠z3;③错误,当x=-1时,虚部也为零,是实数;④错误,此条件是必要非充分条件;⑤错误,当a=b=0时,是实数;⑥是正确的;⑦是正确的;⑧错误,如z1=i,z2=1满足i2+12=0,但z1≠0,z2≠0.

三、解答题(本大题共6个小题,共74分.解答应写出文字说明、证明过程或演算步骤)

17.(本题满分12分)复平面内有A、B、C三点,点A对应复数是3+i,向量AC→对应复数是-2-4i,向量BC→表示的复数是-4-i,求B点对应复数.

[解析] ∵CA→表示的复数是2+4i,

CB→表示的复数是4+i,

∴AB→表示的复数为(4+i)-(2+4i)=2-3i,

故OB→=OA→+AB→对应的复数为

(3+i)+(2-3i)=5-2i,

∴B点对应的复数为zB=5-2i.

18.(本题满分12分)已知(1+2i)z=4+3i,求z及zz.

[解析] 设z=a+bi,则z=a-bi(a,b∈R)

∴(1+2i)(a-bi)=4+3i

∴(a+2b)+(2a-b)i=4+3i

∴a+2b=42a-b=3,∴a=2,b=1,∴z=2+i,

∴z=2-i,

∴zz=2+i2-i=(2+i)25=35+45i.

19.(本题满分12分)虚数z满足|z|=1,z2+2z+1z<0,求z.

[解析] 设z=x+yi (x、y∈R,y≠0),∴x2+y2=1.

则z2+2z+1z=(x+yi)2+2(x+yi)+1x+yi

=(x2-y2+3x)+y(2x+1)i.

∵y≠0,z2+2z+1z<0,

∴2x+1=0,     ①x2-y2+3x<0, ②

又x2+y2=1.      ③

由①②③得 x=-12,y=±32.

∴z=-12±32i.

20.(本题满分12分)已知复数z满足|z|=2,z2的虚部为2.

(1)求复数z;

(2)设z,z2,z-z2在复平面内对应的点分别为A,B,C,求△ABC的面积.

[解析] (1)设z=a+bi(a,b∈R),由已知条件得:a2+b2=2,z2=a2-b2+2abi,所以2ab=2.

所以a=b=1或a=b=-1,即z=1+i或z=-1-i.

(2)当z=1+i时,z2=(1+i)2=2i,z-z2=1-i.所以点A(1,1),B(0,2),C(1,-1),所以S△ABC=12|AC|×1=12×2×1=1.

当z=-1-i时,z2=(-1-i)2=2i,z-z2=-1-3i.

所以点A(-1,-1),B(0,2),C(-1,-3),所以S△ABC=12|AC|×1=12×2×1=1.即△ABC的面积为1.

21.(本题满分12分)已知复数z1,z2满足条件|z1|=2,|z2|=3,且3z1+2z2=6,求复数z1和z2.

[解析] 设z1=a+bi,z2=c+di(a,b,c,d∈R),则a2+b2=4,c2+d2=9,由3z1+2z2=6,得(3a+2c)+(3b+2d)i=6,

由复数相等得3a+2c=6,3b+2d=0.

解方程组a2+b2=4,c2+d2=9,3a+2c=6,3b+2d=0,得a=1,b=3,c=32,d=-332,或a=1,b=-3,c=32,d=332.

所以z1=1+3i,z2=32-323i,或z1=1-3i,z2=32+323i.

22.(本题满分14分)已知复数z=(2x+a)+(2-x+a)i,x,a∈R,且a为常数,试求|z|的最小值g(a)的表达式.

[解析] |z|2=(2x+a)2+(2-x+a)2=22x+2-2x+2a(2x+2-x)+2a2.

令t=2x+2-x,则t≥2,且22x+2-2x=t2-2.

从而|z|2=t2+2at+2a2-2=(t+a)2+a2-2,

当-a≥2,即a≤-2时,g(a)=a2-2;

当-a<2,即a>-2时,g(a)=(a+2)2+a2-2=2|a+1|.

综上可知,g(a)=a2-2 (a≤-2),2|a+1| (a>-2).

以上就是我们给大家带来的高二数学数系的扩充与复数的引入练习,数学学习中,做练习很重要,多做练习,同学们才能把数学掌握的更好。

网站地图 | 全国免费咨询热线: | 服务时间:8:00-23:00(节假日不休)

违法和不良信息举报电话:400-810-5688 举报邮箱:info@xueda.com 网上有害信息举报专区

京ICP备10045583号-6 学大Xueda.com 版权所有 北京学大信息技术集团有限公司 京公网安备 11010502031324号

增值电信业务经营许可证京B2-20100091 电信与信息服务业务经营许可证京ICP证100956